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SUMMARY

For this project, we have incorporated a prior model in least
square reverse time migration (LSRTM) to investigate how
adding a prior model can improve or distort the seismic im-
age. In exploration, a prior model can be used to incorporate
well data or geological information that provide further con-
straints for subsurface reflector locations. We compared reg-
ularized LSRTM (RLSRTM) with a prior model against the
standard LSRTM solution. We tested scenarios in which the
prior model was both accurate and inaccurate in terms of po-
sitioning, dimensions, and confidence. When the prior model
was accurate, the RLSRTM solution significantly improved the
subsurface reflectivity when compared to LSRTM. However,
an inaccurate prior model can distort the image, leading to a
reflectivity model that misrepresents or smears the true sub-
surface anomaly.

INTRODUCTION

Least-squares reverse time migration offers a significant ad-
vantage over traditional methods in that it produces high-resolution
images while preserving amplitude information. This is achieved
by formulating the imaging problem as a least-squares mini-
mization. However, the inherent ill-posedness of the inverse
problem can lead to convergence issues. Regularization tech-
niques and the incorporation of a prior model can significantly
improve gradient-based optimization and address these chal-
lenges (Li et al. (2015)).

Field exploration often yields valuable prior information from
well data and geological studies that can be included in the in-
version process to improve image sharpness and reduce com-
putation time. This project investigates the impact of a prior
model, where we explore how different types of prior models
can affect the final image quality.

Additionally, we compare the effects of different prior models,
highlighting the importance of integrating diverse data types
that may constrain inaccurate results. This comparison show-
cases how an inaccurate prior model can negatively impact the
final image.

Numerical tests were conducted using Devito (R. A. de Cristo
and Pestana (2021)) to demonstrate the changes produced by
RLSRTM with different prior model information. Devito is a
finite difference solver with symbolic programming that gen-
erates a c-optimized code more efficient for large scale finite
difference models.

THEORY

Least square migration is based on the assumption that, a linear
operator L, based on the wave equation, acts on a reflectivity

model, m, to produce data, d:

Lm = d

The migration operator is therefore defined as the the adjoint of
L and transforms the data to the model domain (e.g. a seismic
image):

LTd = m

LSM aims to find the image that best predicts, in a least-squares
sense, the recorded seismic data. To accomplish this, we min-
imize the following function:

φ =
1
2
∥Lm−d∥2

2

whose gradient can be expressed as:

∇φ = g = LT [Lm−d]

If we wish to incorporate prior information into our solution,
the regularized LSM must now be expressed as:

φ =
1
2
∥Lm−d∥2

2 +λ∥m−mprior∥2
2

Now, the gradient of the regularized objective function be-
comes:

∇φ = g = LT [Lm−d]+λ [m−mprior]

In the exploration setting, we might construct the prior model
term with well data and stratigraphic tops interpretations, for
example. For this project, we have assumed knowledge of the
approximate location of the reflectivity boundaries when con-
structing our reference model. We then produce the LSRTM
and RLSRTM solutions for each reference model example and
compare their resulting images in terms of the reflector’s sharp-
ness and positioning.

The least square migration problem is solved iteratively. For
each iteration we need a search direction and a step length. The
model update is presented by the following equation:

mk+1 = mk +αvk

where the model at iteration mk+1 is equal to the model at the
previous iteration mk plus α which is the step length and vk is
the search direction. For steepest descent the search direction
v is the gradient of the objective function. For this study we
selected the step length as (A. Oliveira and dos Santos (2016)):

α =
gT gk

LgT
k Lgk
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RESULTS & DISCUSSION

For creating data in forward modeling, each iteration used 15
shots located every 70 meters at the surface. Receivers were
also located at the surface and separated by a distance of 10
meters. To solve the inverse problem we computed 10 itera-
tions in total. In Figures 1-7, the first plot shows the unique
reference model used in that case study. The second and third
plots show the results of the LSRTM and RLSTRTM solutions.
This is followed by the true reflectivity model. The final image
compares the LSRTM and RLSRTM solutions reflector inten-
sities against that of the true model.

The regularization parameter plays an important role when find-
ing the optimal model to the regularize square migration prob-
lem. A small regularization parameter λ values makes the con-
tribution of the regularization and the prior model negligible.
On the other hand, a high λ create the opposite results, the
regularization term and the reference model will overtake the
solution and the model obtained will be very close to the ref-
erence model. We tested several regularization parameters to
better understand their effects on the RLSRTM solution. We
first needed to select an appropriate regularization term, and in
doing so, we observed that a high value was required for the
regularization term. In this project, we are not using the weight
matrices for the data or model (Wd and Wm). These matrices
serve as normalization for the data and model terms; for this
reason, we must choose a high beta value to ensure that the
contribution of the reference model is non-negligible.

Then, assuming centering and dimensions of the anomaly are
consistent with the true model, we vary Gaussian smoothing
of the reference model under three different conditions: high
smoothing in which σx =σy = 7.5 (Figure 2), average smooth-
ing in which σx = σy = 5 (Figure 1), and low smoothing in
which σx = σy = 2.5 (Figure 3). The smoothing of the refer-
ence model represents the certainty of the prior information in
the location of the reflectivity boundaries. A low smoothing
represents the case where we have high confident on the prior
information. As anticipated, low smoothing with the highly
accurate reference model produces a sharp, clear reflectivity.
When comparing the RLSRTM and LSRTM solutions, we ob-
serve that as uncertainty in the anomaly increases, the RL-
SRTM solution worsens. For the highly smoothed model, it
is difficult to discern the anomaly at all.

We also vary the center and dimensions of the anomaly to
mimic a misplaced or missized geologic feature. We begin by
displacing the anomaly 1 km to the left as shown in Figure 4.
Notice now that the reflector in the RLSRTM has been smeared
laterally to the left due to the influence of the reference model.
However, the true anomaly is still observable in its correct po-
sition. If we continue increasing our regularization term, the
reference model dominates as expected. Likewise, in Figure 5,
the reference model has misplaced the anomaly 10 km above
its true position. We again notice the subsequent smearing but
still image the true anomaly as well.

Finally, in Figure 6 and Figure 7 we expand and shrink the ref-
erence model size by 4x while maintaining the correct center-
ing. Once again, we observe distortions and higher amplitudes

in the sensitivity kernel while still imaging the true anomaly.

CONCLUSION

This analysis suggests that high confidence prior knowledge
can produce a sharper image in RLSRTM than can acquired
with LSRTM. If the reference model is significantly misaligned
or missized however, the LSRTM approach can produce a bet-
ter result. Even with an inaccurate reference model, the RLRSTM
solution was still able to identify the true anomaly but artifacts
introduced by the reference model can make it difficult to iden-
tify the correct boundaries.

This work highlights the importance of incorporating prior in-
formation into the inversion procedure and shows that mis-
guided reference models produce inaccurate images.
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Figure 1: Reference model with center and dimensions that
match the true, but with Gaussian low smoothing applied (σx =
σy = 2.5).
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Figure 2: Reference model with center and dimensions that
match the true model, but with Gaussian average smoothing
applied (σx = σy = 5).
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Figure 3: Reference model with center and dimensions that
match the true model, but with Gaussian high smoothing ap-
plied (σx = σy = 7.5).
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Figure 4: Reference model dimensions match the true model
but the center is offset to the left by 10km. This model utilizes
average smoothing (σx = σy = 5).
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Figure 5: Reference model dimensions match the true model
but the center is offset upwards by 10km. This model utilizes
average smoothing (σx = σy = 5).

0 25 50 75 100
X position (km)

0

20

40

60

80

De
pt

h 
(k

m
)

Reference model

0 25 50 75 100
X position (km)

0

20

40

60

80

De
pt

h 
(k

m
)

LSRTM

0 25 50 75 100
X position (km)

0

20

40

60

80

De
pt

h 
(k

m
)

RLSRTM

0 25 50 75 100
X position (km)

0

20

40

60

80

De
pt

h 
(k

m
)

True image

0.4 0.2 0.0 0.2 0.4
Intensity

0.0

0.2

0.4

0.6

0.8

1.0

De
pt

h

Image comparison

LSRTM
RLSRTM 
True

Figure 6: Reference model centered in the same location as
the true model but is 4x larger. This model utilizes average
smoothing (σx = σy = 5).
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Figure 7: Reference model centered in the same location as
the true model but is 4x smaller. This model utilizes average
smoothing (σx = σy = 5).
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