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INTRODUCTION

Seismic reverse time migration (RTM) is a technique used to
estimate the Earth’s subsurface structure using wave reflection
data. By solving the wave equation through a given medium,
we are able to simulate the propagation of incident and scat-
tered waves. Then, by implementing an imaging condition
that relates these incident and scattered waves, the reconstruc-
tion of subsurface structures can be estimated regardless of the
body’s velocity profile and accompanying reflection bound-
aries. For this reason, RTM is a powerful high fidelity method-
ology for analyzing the subsurface.

METHODOLOGY

When implementing the reverse time migration process, a se-
ries of source and receiver pairings can be used to simulate
wave emitters and recorders to reconstruct the reflection bound-
aries of an unknown medium. The theoretical process is rela-
tively straightforward. A signal fired from a source will prop-
agate through the field and the signals (or waveforms) ”felt”
at each receiver location are recorded. The signals recorded
at each receiver are then reversed in time and propagated into
the medium from the corresponding receiver locations. That
is, the last signal arriving at the receiver location is the first
to be re-injected into the model. Figure 1 displays a example
snapshot of the receiver-recorded waveforms being re-injected
into the medium.

Once re-injection has been computed for all time steps, the re-
sulting re-injected waveforms must be reversed in time again
(or, alternatively, the incident wave data must be time-reversed).
This is because the original forward propagation and the re-
injected receiver waveforms will be multiplied at all time steps.
This effect is equivalent to cross correlating the forward and
reverse waves and thus requires the re-injected data to begin
from t=0 to match the time evolution of the forward data. The
result is a multiplication of two signals that are only both non-
zero at the location at which they were reflected. In other
words, the forward waveform is multiplied by its reflection
data for all time steps and the result provides a non-zero value
only at the location where the two waves intersect, the reflec-
tion point. The summation of this cross correlation process for
all of the previously simulated time steps provides a detailed
image of all reflection boundaries encountered in the medium.
Moreover, repeating this process for sources at a variety of
locations increases the model’s spatial fidelity by introducing
more signals to be interact with boundaries and by better sam-
pling boundaries at steep angles with respect to the original
source point. Better sampling of structures at greater distances
from the source location simply requires the model be given
sufficient time to reach and interact with these boundaries.

Equations

Figure 1: The wavefield produced after 500 model seconds
as a result of the re-injection of the signals recorded by each
receiver at the receivers’ location using a single original source
located at [x=560m,y=28m].

To propagate a wave in a two dimensional acoustic medium,
a hyperbolic partial differential equation must be solved. To
complete this process computationally, a discretized version of
the wave equation must be introduced. In this model, I utilize
an eighth-order heterogeneous wave equation. This process is
used because higher order estimations increase the accuracy of
the solution by more faithfully accounting for the second order
derivative approximation in the wave equation. Alternatively,
smaller spatial steps can increase model accuracy, but subse-
quently increase computation time to (O(N3)). Higher order
approximation methods circumvent these significant computa-
tional time increases. The eighth-order homogeneous approx-
imation is given by,
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and uses the four surrounding points to the left and right of
center, as well as the four surrounding points above and be-
low the center to develop an approximation for the value at the
center point for the following time step. A boundary condition
consisting of 0’s and occupying the four elements closest to
the boundaries is implemented. These points handle the end
case so that the model does not search for non existent values
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outside of the model space. The zero values create reflecting
boundaries, but non-zero boundary values could also be imple-
mented to simulate absorption into the surrounding material.

Furthermore, to implement the heterogeneity of the velocity
wavefield, a spatially varying velocity function is introduced
into the wave equation. The resulting value for each discretized
point in the medium is then given by,
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This equation successfully estimates the wave propagation in
the medium for any input source (that is, for either incident or
reflected waves) and is the solution to the discretized eighth-
order heterogeneous wave equation.

Aside from the model’s wavefield evolution conditions pro-
vided by the eighth order wave approximation, a wave signal
must also be introduced to transmit into the medium. The for-
ward model employs a Ricker wavelet to propagate through
the medium and is given by,
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It is important to note that the reverse time migration utilizes
recorded wave signal traces and thus therefore does not need
the Ricker wavelet signal during the re-injection step. In ad-
dition, the RTM process outlined in the previous section can
mathematically be described by,
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where SF(x,y, t) describes the forward modeled two dimen-
sional wavefield at time t and SR(x,y, t) provides the time in-
verted two dimensional reflection wavefield model at time t.

Finally, to ensure model stability and limit numerical disper-
sion, the Courant number was carefully handled to be no greater
than 0.5. The Courant number is given by,

(5)C =
c∆t
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and mathematically encodes that the time step, ∆t, must be
smaller than the time taken for the wave to travel the distance
of the spatial step, ∆x, in order to to create stable solution.

METHODOLOGY

To test the reverse time migration process, I utilize the Mar-
mousi model and its corresponding velocity profile as shown
in Figure 2. Receivers were simulated at every point along
the x-axis (every column) at a depth of 28 meters and sources
were simulated at a depth of 28 meters and at evenly spaced,
repeating intervals of 28 meters along the x-axis. The yellow
stars in Figure 2 represent source locations in the Marmousi
model, while the green triangles represent receiver locations.
Note that the green stars appear to be a line because they are
so densely packed together at every point along the x-axis.

Figure 2: The Marmousi subsurface velocity model. Yellow
stars indicate source locations, while green triangles indicate
receiver positions.

Several alternate models with variable source location testing
were also tested for comparison. For all implementations of
this model, the Ricker wavelet time shift, t0, was 0.05 and the
time duration of the wave, σ , was 0.001. Furthermore, the
model was implemented with a time discretization of 4.2ms,
spatial discretization along the x-axis 0f 4.667, and spatial dis-
cretization along the y-axis of 4.697. As a result, the Courant
number was 0.5.

RESULTS

Figure 3 displays the results of the RTM process performed
on the standard configuration after it is run for 3,000 model
seconds.

When comparing this result against the original Marmousi model,
it is clear that the same predominant features can be seen in
both images. Figure 4 is an overlay that highlights some of the
major structures present in both images.

A second implementation of the standard model that has been
simulated for 500 model seconds is displayed in Figure 5 be-
low. Figure 6 displays the accompanying RTM and Marmousi
overlay.

From these image it is clear that neither RTM solution is able
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Figure 3: RTM result after running the simulation for 3,000
model seconds with 50 evenly distributed sources at 28m in-
tervals.

Figure 4: Structure comparison between RTM result and Mar-
mousi model using 50 sources and a simulation time of 500
model seconds.

to produce the exact fidelity shown in the original Marmousi
model, although this is note entirely unexpected. The differ-
ence is due in part to the spatial discretization limitations of
the model in the computational calculation, as well as the in-
terference of signals. The diminished resolution in the sub-
surface can also be handled by increasing the time the model
is allowed to run, as is evident from the comparison between
Figures 4 and 6.

Figure 5: RTM result after running the simulation for 3,000
model seconds with 50 evenly distributed sources at 28m in-
tervals.

Figure 6: Structure comparison between RTM result and Mar-
mousi model using 50 sources and a simulation time of 3,000
model seconds.

DISCUSSION

The first deployment of the model introduced a single source
as depicted in Figure 7. However, as discussed previously, a
multi-source arrangement can be calculated and summed to
increase model resolution.

After testing a variety of different source locations, I found that
when the sources were densely deployed, it became difficult to
detect features in the near subsurface due to an extreme amount
of scattering. Figure 8 displays the loss of resolution in the
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Figure 7: RTM result from a simulation of 1,500 model sec-
onds with a single source point at [x=560m,y=28m].

near subsurface with densely deployed sources.

Figure 8: RTM result from simulation of 3,000 model seconds
with 50 evenly distributed sources at 28 m intervals.

To combat this issue, the model output must be appropriately
scaled for each scenario with a different numbers of receivers.
For this reason, I chose a standard implementation with evenly
distributed source locations with a width of 28 meters. I also
tested a range of total run times to ensure that the wavelet was
able to sufficiently propagate to the bottom boundary of the
model. From the various simulation times tested, I believe
that the minimum model time needed to sample features un-
der 1000 meters is 1500 seconds. Figures 5 and 6 display the
lack of penetration depth that occurs when the model is not

run for a sufficiently long period, while Figures 9 and 10 are
the RTM and overlay results from a simulation time of 1500
seconds.

Figure 9: RTM result from simulation of 1,500 model seconds
with 50 evenly distributed sources at 28 m intervals.

Figure 10: Structure comparison between RTM result and
Marmousi model after a simulation of 1,500 model seconds.

Due to the increased attenuation from scattering as the wave
travels through the model, the strength of the signal fades with
depth. For this reason, the coloring scheme in the near surface
of the RTM model appears to be much stronger. However, be-
cause the RTM method does not solve for the velocity in the
medium, but rather the reflection points, the strength of the sig-
nal, and thus the color, does not relay any physical knowledge
about the material at those locations. Appendix A includes the
results from several other source setups and time simulations.
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CONCLUSIONS

From the comparison between the Marmousi model and the
calculated RTM result, it is clear that the RTM method is able
to distinguish reflection boundaries in the subsurface. Although
the RTM procedure does not perfectly match the the structure
of the Marmousi model, they are in very close agreement. For
models with a simpler velocity structure, the RTM method
would produce even more accurate results since the extreme
scattering in the Marmousi model’s near surface would not
impede wave propagation to greater depths. It is clear that
longer simulation times are an incredibly important factor in
increased model resolution, but it also comes at the expense of
longer computation times.

For the standard implementation of the RTM process, the model
best resolves images in the near subsurface. Structures in the
deeper interior can clearly be seen when longer simulation
times and denser source deployments are used, but the fidelity
still pales in comparison to the results from the shallow reflec-
tions.

APPENDIX A

The images in this section are a variety of RTM results and
their subsequent overlays against the Marmousi for a variety
of simulation times not discussed in the paper.

Figure A-1: RTM result from simulation of 500 model seconds
with 10 evenly distributed sources at 140 m intervals.

Figure A-2: Structure comparison between RTM result and
Marmousi model using 10 sources and a simulation time of
500 model seconds.

Figure A-3: RTM result from simulation of 1,500 model sec-
onds with 10 evenly distributed sources at 140 m intervals.

Figure A-4: Structure comparison between RTM result and
Marmousi model using 10 sources and a simulation time of
1,500 model seconds.
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Figure A-5: RTM result from simulation of 3,000 model sec-
onds with 10 evenly distributed sources at 140 m intervals.

Figure A-6: Structure comparison between RTM result and
Marmousi model using 10 sources and a simulation time of
3,000 model seconds.

Figure A-7: RTM result from simulation of 1,000 model sec-
onds with 50 evenly distributed sources at 28 m intervals.

Figure A-8: Structure comparison between RTM result and
Marmousi model using 50 sources and a simulation time of
1,000 model seconds.

Figure A-9: RTM result from simulation of 5,000 model sec-
onds with 50 evenly distributed sources at 28 m intervals.

Figure A-10: Structure comparison between RTM result and
Marmousi model using 50 sources and a simulation time of
5,000 model seconds.


